首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1936篇
  免费   331篇
  国内免费   251篇
测绘学   34篇
大气科学   208篇
地球物理   635篇
地质学   429篇
海洋学   925篇
天文学   19篇
综合类   128篇
自然地理   140篇
  2024年   5篇
  2023年   21篇
  2022年   36篇
  2021年   79篇
  2020年   81篇
  2019年   72篇
  2018年   51篇
  2017年   89篇
  2016年   91篇
  2015年   82篇
  2014年   117篇
  2013年   215篇
  2012年   66篇
  2011年   118篇
  2010年   88篇
  2009年   130篇
  2008年   131篇
  2007年   133篇
  2006年   123篇
  2005年   99篇
  2004年   97篇
  2003年   68篇
  2002年   74篇
  2001年   64篇
  2000年   56篇
  1999年   53篇
  1998年   37篇
  1997年   42篇
  1996年   42篇
  1995年   24篇
  1994年   24篇
  1993年   26篇
  1992年   19篇
  1991年   10篇
  1990年   15篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2518条查询结果,搜索用时 15 毫秒
991.
Peatlands cover a very small area of the Earth, but store globally significant quantities of carbon and export disproportionate quantities of fluvial organic carbon, especially when the peatlands are degraded or disturbed. Peatland headwater catchments with high concentrations of dissolved and particulate organic carbon (DOC and POC) provide an opportunity to investigate the possibility of competing effects that could lead to enhanced or diminished turnover of DOC in the presence of POC. Both POC and DOC can be degraded by light and microbes, producing smaller molecules and releasing CO2 and CH4 to the atmosphere, and POC can inhibit light penetration, stabilize DOC by providing adsorption sites and providing surfaces for microbes to interact with DOC. However, the majority of peatland fluvial carbon studies are conducted using filtered water samples, and measure only the DOC concentration, so the impact of the particulate organic matter (POM) on in-stream processing of organic carbon is relatively unknown. It is therefore possible that studies have underestimated carbon transformations in rivers as they have not considered the interaction of the particulate material on the dissolved concentrations; there could be higher losses than previously estimated, increasing the contribution of peatland headwaters to GHG emissions. In this study, we assessed if the current approach of DOC degradation studies accurately represent the impact of POM on DOC degradation, by quantifying DOC production from POM, and therefore POC, over time in water with manipulated POM concentrations. Both filtered and unfiltered water lost 60% of the DOC over 70 hours, whereas the treatment with additional POM lost only 35%. The results showed that filtering does not significantly impact the DOC degradation rates; however, when the POC concentration was doubled, there was a significant reduction in DOC degradation, suggesting that filtering would still be necessary to get accurate rates of DOC transformations in waters with high POC concentrations.  相似文献   
992.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   
993.
Lateral inflows control the spatial distribution of river discharge, and understanding their patterns is fundamental for accurately modelling instream flows and travel time distributions necessary for evaluating impacts of climate change on aquatic habitat suitability, river energy budgets, and fate of dissolved organic carbon. Yet, little is known about the spatial distribution of lateral inflows in Arctic rivers given the lack of gauging stations. With a network of stream gauging and meteorological stations within the Kuparuk River watershed in northern Alaska, we estimated precipitation and lateral inflows for nine subcatchments from 1 July to 4 August,2013, 2014, and 2015. Total precipitation, lateral inflows, runoff ratios (area-normalized lateral inflow divided by precipitation), percent contribution to total basin discharge, and lateral inflow per river kilometre were estimated for each watershed for relatively dry, moderate, or wet summers. The results show substantial variability between years and subcatchments. Total basin lateral inflow depths ranged 24-fold in response to a threefold change in rainfall between dry and wet years, whereas within-basin lateral inflows varied fivefold from the coastal plain to the foothills. General spatial trends in lateral inflows were consistent with previous studies and mean summer precipitation patterns. However, the spatially distributed nature of these estimates revealed that reaches in the vicinity of a spring-fed surficial ice feature do not follow general spatial trends and that the coastal plain, which is typically considered to produce minimal runoff, showed potential to contribute to total river discharge. These findings are used to provide a spatially distributed understanding of lateral inflows and identify watershed characteristics that influence hydrologic responses.  相似文献   
994.
通过对雪莎地区开展1∶5万水系沉积物测量、样品采集和数据综合处理,圈定了Au、As、Sb、Hg、Ag等16种元素的单元素异常和35处综合异常。依据元素地化特征、元素相关性分析以及异常评序查证结果,划分出4个找矿远景区。重点分析了界米拉综合异常,结合查证结果,初步探讨了测区的找矿方向,为该区今后地质找矿部署提供了依据。  相似文献   
995.
Though high rates of nitrate (NO3) leaching from forests are undesirable, the factors significantly regulating stream NO3 concentration is not clarified yet. In Japan, not only near metropolitan areas but also the Japan Sea-side area with heavy snowfall is well known for receiving more than 10 kg-N ha−1 year−1 of nitrogen (N) deposition. However, NO3 concentration in stream water is relatively low in the Japan Sea-side area compared with its concentration in other areas. We examined important environmental factors regulating stream NO3 concentrations at baseflow condition in a large region of Japan, the Kinki region (KIN) including a part of Japan Sea-side (JSK) using Random Forest regression. The amounts of N deposition and precipitation were common regulating factors for stream NO3 concentration at baseflow condition. Random forest showed the significant correlation between the factors related to ecosystem N retention and stream NO3 concentration at baseflow condition, and it suggests that large N deposited during the growing season was incorporated into the ecosystem in the entire KIN. Heavy rain and snow flush N and wash out N accumulated in the surface soil, causing small N accumulation in forests. Also, large precipitation dilute NO3 concentration in baseflows. These things lowered stream NO3 concentration at baseflow condition. Especially in JSK, most of N deposed with the heavy snow flushed out during the snowmelt period. We provided the first statistical confirmation using Random Forest regression that N accumulation and cycling in forest ecosystems were related to NO3 leaching from forests into streams.  相似文献   
996.
Data on temporal variability in Mg isotope ratios of atmospheric deposition and runoff are critical for decreasing the uncertainty associated with construction of isotope mass balances in headwater catchments, and statistical evaluation of isotope differences among Mg pools and fluxes. Such evaluations, in turn, are needed to distinguish between biotic and abiotic contributions to Mg2+ in catchment runoff. We report the first annual time-series of δ26Mg values simultaneously determined for rainfall, canopy throughfall, soil water and runoff. The studied 55-ha catchment, situated in western Czech Republic, is underlain by Mg-rich amphibolite and covered by mature spruce stands. Between 1970 and 1996, the site received extremely high amounts of acid deposition and fly ash form nearby coal-burning power plants. The δ26Mg values of open-area precipitation (median of −0.79‰) at our study site were statistically indistinguishable from the δ26Mg values of throughfall (−0.73‰), but significantly different from the δ26Mg values of soil water (−0.55‰) and runoff (−0.55‰). The range of δ26Mg values during the observation period decreased in the order: open-area precipitation (0.57‰) > throughfall (0.27‰) > runoff (0.21‰) > soil water (0.16‰). The decreasing variability in δ26Mg values of Mg2+ from precipitation to soil water and runoff reflected an increasing homogenization of atmospheric Mg in the catchment and its mixing with geogenic Mg. In addition to atmospheric Mg, runoff also contained Mg mobilized from the three major solid Mg pools, bedrock (δ26Mg of −0.32‰), soil (−0.28‰), and vegetation (−0.31‰). The drought of summer 2019 did not affect the nearly constant δ26Mg value of runoff. Collectively, our data show that within-catchment processes buffer the Mg isotope variability of the atmospheric input.  相似文献   
997.
Extensive implementation of centre pivot irrigation systems occurred between 1970 and 1980 in the lower Flint River Basin (FRB) of southwestern Georgia, USA. Groundwater within this karstic system is in direct hydraulic connection with regional streams, many of which are incised through the overburden into underlying limestone. We used long‐term U.S. Geological Survey gaging station data to evaluate multiple flow metrics of two tributaries (Ichawaynochaway Creek and Spring Creek) in the lower FRB to determine the extent of changes in stream behaviour since irrigation practices intensified. We compared pre‐ and post‐irrigation flow duration curves, 1‐, 7‐, and 14‐day minimum flows, and 8‐day (seasonal) and annual baseflow recession slopes, in addition to evaluating regional climate data to determine whether significant differences existed between the pre‐ and post‐irrigation periods. Our results showed significant changes in low‐flow durations in the post‐irrigation record for both gages, including a decrease by an order of magnitude for 98% exceedance flows at Spring Creek. Both gages indicated significant reductions in 1‐, 7‐, and 14‐day low flows. Eight‐day baseflow recession curves (within early summer months) and annual baseflow recession curves became significantly steeper during the post‐irrigation period for Ichawaynochaway Creek. We also found that a significant relationship existed between winter and summer minimum flows in both streams in the pre‐irrigation period which was disrupted in post‐irrigation years. Regional climate data for the study period revealed no significant changes in rainfall totals or frequency of drought; however, there was evidence for a shift in seasonal rainfall patterns. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
The extent and variability of water storage and residence times throughout the open water season in beaded arctic streams are poorly understood. Data collected in Imnavait Creek, a beaded stream located north of the Brooks Range in Alaska, were used to better understand the effects of in‐pool and riparian storage on heat and mass movement through beaded streams. Temperature data of high spatial resolution within the pools and surrounding sediments were used with volumetric discharge and electrical conductivity to identify storage areas within the pools, banks, and other marshy areas within the riparian zone, including subsurface flow paths that connect the pools. These subsurface flows were found to alter water conductivity and the character of dissolved organic matter (DOM) in short reaches (10 s of m) while influencing the chemistry of downstream pools. During low flow periods, persistent stratification occurred within the pools due to absorption of solar radiation by DOM coupled with permafrost below and low wind stress at the pool surface. Additionally, one of the shallow pools (<0.5 m depth) remained stratified during higher flow periods and lower radiation inputs due to dense subsurface flows entering the bottom of the pools. This consistent separation of surface and bottom water masses in each pool will increase the travel times through this and similar arctic watersheds, and therefore will affect the evolution of water chemistry and material export. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
999.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1000.
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage‐discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics‐based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m‐wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90‐m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a ‘hybrid model’ rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see ‘below’ the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics‐based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号